Sains Malaysiana 54(8)(2025): 1985-1994
http://doi.org/10.17576/jsm-2025-5408-09
Evaluating the Efficacy of Cryopreservation Media for
the Preservation and Short-Term Storage of Human Dermal Fibroblast
(Menilai Keberkesanan Media Pengkrioawetan untuk Pemeliharaan dan Penyimpanan Jangka Pendek Fibroblas Dermal Manusia)
TITHTEEYA RATTANACHOT1,
NUR RASYIDAH HAZIMAH MOHD ROSDI1, NUSAIBAH SALLEHUDDIN1,
FAUZI MH BUSRA1,2 & MANIRA MAAROF1,2,3,*
1Department of Tissue Engineering and
Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur,
Malaysia
2Advance Bioactive Materials-Cells UKM
Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Ageing and Degenerative Disease UKM
Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 20
November 2024/Accepted: 17 June 2025
Abstract
Cryopreservation is a vital process
for long-term preservation of cells without compromising their viability and functionality.
Continuous cell culturing can lead to reduction in cell viability, higher risk
of contamination, and increased reagent consumption. Optimizing short-term
storage is essential to minimize cell damage and enhance cell adaptability for
applications requiring brief storage duration. This study evaluates the effects
of short-term storage on human dermal fibroblasts cryopreserved in different cryopreservation
media. Redundant skin samples were obtained from surgeries with patient
consent, processed, and sub-cultured to passage three (P3). Confluent cells
were trypsinised and cryopreserved in three cryopreservation media: Foetal bovine serum with 10% dimethyl sulfoxide
(FBS+10%DMSO), CryoStor10 (CS10), and cryo freezing
serum-free media (CF-SFM). Cells were stored at -80 °C for 7 days, 14 days, and
1 month. Fibroblasts maintained their spindle-shaped, elongated morphology
across all groups post-storage. The total number of live cells slightly
decreased after 1 month, but no significant differences were found between the
groups. Cell viability in CS10 after 1 month was significantly lower compared
to the other storage durations, while no significant differences were observed
in the other two media groups. Immunocytochemistry showed positive collagen
type I (Col-1) and Ki67 expression at all storage durations. These findings
suggest that fibroblasts retain their characteristics after short-term storage
at -80 °C in different cryopreservation media. However, further studies are
needed to examine the impact of long-term storage on other cell types.
Keywords: Cell characteristics; cryopreservation;
fibroblasts; short-term storage
Abstrak
Pengkrioawetan merupakan proses penting untuk pemeliharaan jangka panjang sel tanpa menjejaskan daya hidup dan fungsinya. Kultur sel berterusan boleh menyebabkan pengurangan daya hidup sel, peningkatan risiko pencemaran dan penggunaan reagen yang tinggi. Pengoptimuman penyimpanan jangka pendek adalah penting untuk mengurangkan kerosakan dan meningkatkan kebolehsuaian sel bagi aplikasi yang memerlukan tempoh penyimpanan yang singkat. Penyelidikan ini menilai kesan penyimpanan jangka pendek terhadap fibroblas dermal manusia yang dikrioawet dalam media krioawetan berbeza. Sampel kulit berlebihan diperoleh daripada pembedahan dengan kebenaran pesakit, diproses dan dikultur sehingga subkultur 3 (P3). Sel yang mencapai konfluensi akan ditripsinkan dan dibekukan dalam tiga jenis media berbeza: serum janin lembu dengan 10% dimetil sulfoksida (FBS+10%DMSO),
CryoStor10 (CS10) dan media bebas serum pembekuan kriogenik (CF-SFM). Sel ini disimpan pada suhu -80 °C selama 7 hari, 14 hari dan 1 bulan. Fibroblas mengekalkan morfologi berbentuk gelendong yang memanjang selepas penyimpanan. Jumlah keseluruhan sel hidup menurun sedikit selepas 1 bulan, namun tiada perbezaan yang ketara ditemui antara kumpulan. Keviabelan sel dalam CS10 selepas 1 bulan adalah lebih rendah berbanding tempoh penyimpanan yang lain, manakala tiada perbezaan diperhatikan dalam dua kumpulan media yang
lain. Analisis imunositokimia menunjukkan ekspresi positif kolagen jenis I (Col-1) dan Ki67 pada semua tempoh penyimpanan. Penemuan ini menunjukkan bahawa fibroblas dapat mengekalkan cirinya selepas penyimpanan jangka pendek pada suhu -80 °C dalam media krioawetan berbeza. Namun, kajian lanjut diperlukan untuk menilai kesan penyimpanan jangka panjang pada jenis sel lain.
Kata kunci: Ciri sel; fibroblas; pengkrioawetan; penyimpanan jangka pendek
REFERENCES
Awan, M., Buriak, I., Fleck, R., Fuller, B., Goltsev, A., Kerby, J., Lowdell,
M., Mericka, P., Petrenko, A., Petrenko, Y., Rogulska, O., Stolzing, A. &
Stacey, G.N. 2020. Dimethyl sulfoxide: A central player since the dawn of
cryobiology, is efficacy balanced by toxicity? Regenerative Medicine 15(3):
1463-1491. https://doi.org/10.2217/rme-2019-0145
Baust, J.M., Snyder, K.K., Van Buskirk, R.G.
& Baust, J.G. 2022. Assessment of the impact of post-thaw stress pathway
modulation on cell recovery following cryopreservation in a hematopoietic
progenitor cell model. Cells 11(2): 278.
https://doi.org/10.3390/cells11020278.
Caneparo, C., Chabaud, S., Fradette, J. & Bolduc, S. 2022.
Evaluation of a serum-free medium for human epithelial and stromal cell culture. International Journal of Molecular Sciences 23(17): 10035.
https://doi.org/10.3390/ijms231710035
Erol, O.D., Pervin, B., Seker, M.E. &
Aerts-Kaya, F. 2021. Effects of storage media, supplements and cryopreservation
methods on quality of stem cells. World Journal of Stem Cells 13(9):
1197-1214. https://doi.org/10.4252/wjsc.v13.i9.1197
Hunt, C.J. 2019. Technical considerations
in the freezing, low-temperature storage and thawing of stem cells for cellular
therapies. Transfusion Medicine and Hemotherapy 46(3): 134-150.
https://doi.org/10.1159/000497289
Ishak, M.F., Manira, M., Ng, M.H., Khairul,
B., Gargy, L., Aminuddin, B.S. & Ruszymah, B.H.I. 2019. Long term effect of cryopreservation
on primary human skin cells. Sains Malaysiana 48(1): 137-144. https://doi.org/10.17576/jsm-2019-4801-16
Law, J.X., Musa, F., Ruszymah,
B.H., El Haj, A.J. & Yang, Y. 2016. A comparative study of skin cell
activities in collagen and fibrin constructs. Medical Engineering and
Physics 38(9): 854-861. https://doi.org/10.1016/j.medengphy.2016.05.017
Linkova, D.D., Rubtsova, Y.P. & Egorikhina,
M.N. 2022. Cryostorage of mesenchymal stem cells and
biomedical cell-based products. Cells 11(17): 2691.
https://doi.org/10.3390/CELLS11172691
Lisan, R.A., Mahyudin,
F., Edward, M. & Buwana, D.S. 2024. Role of preservation
methods using deep-freezing and liquid nitrogen in bone allograft characteristics:
An in vitro study. Narra J. 4(1): e757.
https://doi.org/10.52225/narra.v4i1.757
Ma, Y., Gao, L., Tian, Y., Chen, P., Yang,
J. & Zhang, L. 2021. Advanced biomaterials in cell preservation:
Hypothermic preservation and cryopreservation. Acta Biomaterialia 131: 97-116. https://doi.org/10.1016/j.actbio.2021.07.001
Manira, M., Khairul Anuar, K., Seet,
W.T., Ahmad Irfan, A.W., Ng, M.H., Chua, K.H., Mohd Heikal, M.Y., Aminuddin,
B.S. & Ruszymah, B.H. 2014. Comparison of the effects between animal-derived
trypsin and recombinant trypsin on human skin cells proliferation, gene and
protein expression. Cell and Tissue Banking 15(1): 41-49.
https://doi.org/10.1007/s10561-013-9368-y
Marcantonini, G., Bartolini, D., Zatini,
L., Costa, S., Passerini, M., Rende, M., Luca, G., Basta,
G., Murdolo, G., Calafiore, R. & Galli, F. 2022. Natural cryoprotective and cytoprotective agents
in cryopreservation: A focus on melatonin. Molecules 27(10): 3254. https://doi.org/10.3390/molecules27103254
McAndrews, K.M., Miyake, T., Ehsanipour, E.A., Kelly, P.J., Becker, L.M., McGrail, D.J.,
Sugimoto, H., LeBleu, V.S., Ge, Y. & Kalluri, R. 2022. Dermal αSMA+ myofibroblasts orchestrate
skin wound repair via β1 integrin
and independent of type I collagen production. EMBO
Journal 41(7): e109470.
https://doi.org/10.15252/EMBJ.2021109470/SUPPL_FILE/EMBJ2021109470-SUP-0007-SDATAEV.ZIP
Meneghel, J., Kilbride, P. & Morris, G.J. 2020.
Cryopreservation as a key element in the successful delivery of cell-based
therapies - A review. Frontiers in Medicine 7: 592242.
https://doi.org/10.3389/FMED.2020.592242/BIBTEX
Mohamed, H.M., Sundar, P., Ridwan, N.A.A., Cheong, A.J.,
Mohamad Salleh, N.A., Sulaiman, N., Mh Busra, F.
& Maarof, M. 2024.
Optimisation of cryopreservation conditions, including storage duration and
revival methods, for the viability of human primary cells. BMC Molecular and
Cell Biology 25(1): 20. https://doi.org/10.1186/s12860-024-00516-6
Murray, K.A. & Gibson, M.I. 2022.
Chemical approaches to cryopreservation. Nature Reviews Chemistry 6:
579-593. https://doi.org/10.1038/s41570-022-00407-4
Nur Izzah Md Fadilah, Mh Busra Fauzi & Manira Maarof. 2024. Effect of
multiple-cycle collections of conditioned media from different cell sources
towards fibroblasts in in vitro wound healing model. Pharmaceutics 16(6): 767. https://doi.org/10.3390/pharmaceutics16060767
Prabhu, V., Rao, B.S.S., Rao, A.C.K., Prasad,
K. & Mahato, K.K. 2022. Photobiomodulation invigorating
collagen deposition, proliferating cell nuclear antigen and Ki67 expression
during dermal wound repair in mice. Lasers in Medical Science 37(1): 171-180.
https://doi.org/10.1007/S10103-020-03202-Z/FIGURES/5
Shorokhova, M., Pugovkina,
N., Zemelko, V., Lyublinskaya,
O. & Grinchuk, T. 2024. Long-term
cryopreservation may cause genomic instability and the premature senescence of
cells. International Journal of Molecular Sciences 25(3): 1467.
https://doi.org/10.3390/ijms25031467
Singh, M., Henry, C., Ma, X., Abolude, A.T., Moawad, A.R., Stephens, T. & Chandra, R.
2023. Effect of different cryopreservation temperatures on recovery of goat
skin derived fibroblast cells. Journal of Biotech Research 15: 355-359.
Uhrig, M., Ezquer,
F. & Ezquer, M. 2022. Improving cell recovery:
Freezing and thawing optimization of induced pluripotent stem cells. Cells 11(5): 799. https://doi.org/10.3390/CELLS11050799/S1
Valyi-Nagy, K., Betsou, F., Susma, A. & Valyi-Nagy, T. 2021.
Optimization of viable glioblastoma cryopreservation for establishment of
primary tumor cell cultures. Biopreservation and Biobanking 19(1): 66. https://doi.org/10.1089/BIO.2020.0050
Whaley, D., Damyar,
K., Witek, R.P., Mendoza, A., Alexander, M. & Lakey, J.R.T. 2021.
Cryopreservation: An overview of principles and cell-specific considerations. Cell
Transplantation 30: 963689721999617. https://doi.org/10.1177/0963689721999617
Yang, J., Gao, L., Liu, M., Sui, X., Zhu, Y.,
Wen, C. & Zhang, L. 2020. Advanced biotechnology for cell cryopreservation. Transactions of Tianjin University 26(6): 409-423.
https://doi.org/10.1007/s12209-019-00227-6
*Corresponding author; email: manira@ukm.edu.my
|