Sains Malaysiana 54(8)(2025): 1985-1994

http://doi.org/10.17576/jsm-2025-5408-09

 

Evaluating the Efficacy of Cryopreservation Media for the Preservation and Short-Term Storage of Human Dermal Fibroblast

(Menilai Keberkesanan Media Pengkrioawetan untuk Pemeliharaan dan Penyimpanan Jangka Pendek Fibroblas Dermal Manusia)

 

TITHTEEYA RATTANACHOT1, NUR RASYIDAH HAZIMAH MOHD ROSDI1, NUSAIBAH SALLEHUDDIN1, FAUZI MH BUSRA1,2 & MANIRA MAAROF1,2,3,*

 

1Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia

2Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 20 November 2024/Accepted: 17 June 2025

 

Abstract

Cryopreservation is a vital process for long-term preservation of cells without compromising their viability and functionality. Continuous cell culturing can lead to reduction in cell viability, higher risk of contamination, and increased reagent consumption. Optimizing short-term storage is essential to minimize cell damage and enhance cell adaptability for applications requiring brief storage duration. This study evaluates the effects of short-term storage on human dermal fibroblasts cryopreserved in different cryopreservation media. Redundant skin samples were obtained from surgeries with patient consent, processed, and sub-cultured to passage three (P3). Confluent cells were trypsinised and cryopreserved in three cryopreservation media: Foetal bovine serum with 10% dimethyl sulfoxide (FBS+10%DMSO), CryoStor10 (CS10), and cryo freezing serum-free media (CF-SFM). Cells were stored at -80 °C for 7 days, 14 days, and 1 month. Fibroblasts maintained their spindle-shaped, elongated morphology across all groups post-storage. The total number of live cells slightly decreased after 1 month, but no significant differences were found between the groups. Cell viability in CS10 after 1 month was significantly lower compared to the other storage durations, while no significant differences were observed in the other two media groups. Immunocytochemistry showed positive collagen type I (Col-1) and Ki67 expression at all storage durations. These findings suggest that fibroblasts retain their characteristics after short-term storage at -80 °C in different cryopreservation media. However, further studies are needed to examine the impact of long-term storage on other cell types.

Keywords: Cell characteristics; cryopreservation; fibroblasts; short-term storage

 

Abstrak

Pengkrioawetan merupakan proses penting untuk pemeliharaan jangka panjang sel tanpa menjejaskan daya hidup dan fungsinya. Kultur sel berterusan boleh menyebabkan pengurangan daya hidup sel, peningkatan risiko pencemaran dan penggunaan reagen yang tinggi. Pengoptimuman penyimpanan jangka pendek adalah penting untuk mengurangkan kerosakan dan meningkatkan kebolehsuaian sel bagi aplikasi yang memerlukan tempoh penyimpanan yang singkat. Penyelidikan ini menilai kesan penyimpanan jangka pendek terhadap fibroblas dermal manusia yang dikrioawet dalam media krioawetan berbeza. Sampel kulit berlebihan diperoleh daripada pembedahan dengan kebenaran pesakit, diproses dan dikultur sehingga subkultur 3 (P3). Sel yang mencapai konfluensi akan ditripsinkan dan dibekukan dalam tiga jenis media berbeza: serum janin lembu dengan 10% dimetil sulfoksida (FBS+10%DMSO), CryoStor10 (CS10) dan media bebas serum pembekuan kriogenik (CF-SFM). Sel ini disimpan pada suhu -80 °C selama 7 hari, 14 hari dan 1 bulan. Fibroblas mengekalkan morfologi berbentuk gelendong yang memanjang selepas penyimpanan. Jumlah keseluruhan sel hidup menurun sedikit selepas 1 bulan, namun tiada perbezaan yang ketara ditemui antara kumpulan. Keviabelan sel dalam CS10 selepas 1 bulan adalah lebih rendah berbanding tempoh penyimpanan yang lain, manakala tiada perbezaan diperhatikan dalam dua kumpulan media yang lain. Analisis imunositokimia menunjukkan ekspresi positif kolagen jenis I (Col-1) dan Ki67 pada semua tempoh penyimpanan. Penemuan ini menunjukkan bahawa fibroblas dapat mengekalkan cirinya selepas penyimpanan jangka pendek pada suhu -80 °C dalam media krioawetan berbeza. Namun, kajian lanjut diperlukan untuk menilai kesan penyimpanan jangka panjang pada jenis sel lain.

Kata kunci: Ciri sel; fibroblas; pengkrioawetan; penyimpanan jangka pendek

 

REFERENCES

Awan, M., Buriak, I., Fleck, R., Fuller, B., Goltsev, A., Kerby, J., Lowdell, M., Mericka, P., Petrenko, A., Petrenko, Y., Rogulska, O., Stolzing, A. & Stacey, G.N. 2020. Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine 15(3): 1463-1491. https://doi.org/10.2217/rme-2019-0145

Baust, J.M., Snyder, K.K., Van Buskirk, R.G. & Baust, J.G. 2022. Assessment of the impact of post-thaw stress pathway modulation on cell recovery following cryopreservation in a hematopoietic progenitor cell model. Cells 11(2): 278. https://doi.org/10.3390/cells11020278.

Caneparo, C., Chabaud, S., Fradette, J. & Bolduc, S. 2022. Evaluation of a serum-free medium for human epithelial and stromal cell culture. International Journal of Molecular Sciences 23(17): 10035. https://doi.org/10.3390/ijms231710035

Erol, O.D., Pervin, B., Seker, M.E. & Aerts-Kaya, F. 2021. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World Journal of Stem Cells 13(9): 1197-1214. https://doi.org/10.4252/wjsc.v13.i9.1197

Hunt, C.J. 2019. Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies. Transfusion Medicine and Hemotherapy 46(3): 134-150. https://doi.org/10.1159/000497289

Ishak, M.F., Manira, M., Ng, M.H., Khairul, B., Gargy, L., Aminuddin, B.S. & Ruszymah, B.H.I. 2019. Long term effect of cryopreservation on primary human skin cells. Sains Malaysiana 48(1): 137-144. https://doi.org/10.17576/jsm-2019-4801-16

Law, J.X., Musa, F., Ruszymah, B.H., El Haj, A.J. & Yang, Y. 2016. A comparative study of skin cell activities in collagen and fibrin constructs. Medical Engineering and Physics 38(9): 854-861. https://doi.org/10.1016/j.medengphy.2016.05.017

Linkova, D.D., Rubtsova, Y.P. & Egorikhina, M.N. 2022. Cryostorage of mesenchymal stem cells and biomedical cell-based products. Cells 11(17): 2691. https://doi.org/10.3390/CELLS11172691

Lisan, R.A., Mahyudin, F., Edward, M. & Buwana, D.S. 2024. Role of preservation methods using deep-freezing and liquid nitrogen in bone allograft characteristics: An in vitro study. Narra J. 4(1): e757. https://doi.org/10.52225/narra.v4i1.757

Ma, Y., Gao, L., Tian, Y., Chen, P., Yang, J. & Zhang, L. 2021. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomaterialia 131: 97-116. https://doi.org/10.1016/j.actbio.2021.07.001

Manira, M., Khairul Anuar, K., Seet, W.T., Ahmad Irfan, A.W., Ng, M.H., Chua, K.H., Mohd Heikal, M.Y., Aminuddin, B.S. & Ruszymah, B.H. 2014. Comparison of the effects between animal-derived trypsin and recombinant trypsin on human skin cells proliferation, gene and protein expression. Cell and Tissue Banking 15(1): 41-49. https://doi.org/10.1007/s10561-013-9368-y

Marcantonini, G., Bartolini, D., Zatini, L., Costa, S., Passerini, M., Rende, M., Luca, G., Basta, G., Murdolo, G., Calafiore, R. & Galli, F. 2022. Natural cryoprotective and cytoprotective agents in cryopreservation: A focus on melatonin. Molecules 27(10): 3254. https://doi.org/10.3390/molecules27103254

McAndrews, K.M., Miyake, T., Ehsanipour, E.A., Kelly, P.J., Becker, L.M., McGrail, D.J., Sugimoto, H., LeBleu, V.S., Ge, Y. & Kalluri, R. 2022. Dermal αSMA+ myofibroblasts orchestrate skin wound repair via β1 integrin and independent of type I collagen production. EMBO Journal 41(7): e109470. https://doi.org/10.15252/EMBJ.2021109470/SUPPL_FILE/EMBJ2021109470-SUP-0007-SDATAEV.ZIP

Meneghel, J., Kilbride, P. & Morris, G.J. 2020. Cryopreservation as a key element in the successful delivery of cell-based therapies - A review. Frontiers in Medicine 7: 592242. https://doi.org/10.3389/FMED.2020.592242/BIBTEX

Mohamed, H.M., Sundar, P., Ridwan, N.A.A., Cheong, A.J., Mohamad Salleh, N.A., Sulaiman, N., Mh Busra, F. & Maarof, M. 2024. Optimisation of cryopreservation conditions, including storage duration and revival methods, for the viability of human primary cells. BMC Molecular and Cell Biology 25(1): 20. https://doi.org/10.1186/s12860-024-00516-6

 Murray, K.A. & Gibson, M.I. 2022. Chemical approaches to cryopreservation. Nature Reviews Chemistry 6: 579-593. https://doi.org/10.1038/s41570-022-00407-4

Nur Izzah Md Fadilah, Mh Busra Fauzi & Manira Maarof. 2024. Effect of multiple-cycle collections of conditioned media from different cell sources towards fibroblasts in in vitro wound healing model. Pharmaceutics 16(6): 767. https://doi.org/10.3390/pharmaceutics16060767

Prabhu, V., Rao, B.S.S., Rao, A.C.K., Prasad, K. & Mahato, K.K. 2022. Photobiomodulation invigorating collagen deposition, proliferating cell nuclear antigen and Ki67 expression during dermal wound repair in mice. Lasers in Medical Science 37(1): 171-180. https://doi.org/10.1007/S10103-020-03202-Z/FIGURES/5

Shorokhova, M., Pugovkina, N., Zemelko, V., Lyublinskaya, O. & Grinchuk, T. 2024. Long-term cryopreservation may cause genomic instability and the premature senescence of cells. International Journal of Molecular Sciences 25(3): 1467. https://doi.org/10.3390/ijms25031467

Singh, M., Henry, C., Ma, X., Abolude, A.T., Moawad, A.R., Stephens, T. & Chandra, R. 2023. Effect of different cryopreservation temperatures on recovery of goat skin derived fibroblast cells. Journal of Biotech Research 15: 355-359.

Uhrig, M., Ezquer, F. & Ezquer, M. 2022. Improving cell recovery: Freezing and thawing optimization of induced pluripotent stem cells. Cells 11(5): 799. https://doi.org/10.3390/CELLS11050799/S1

Valyi-Nagy, K., Betsou, F., Susma, A. & Valyi-Nagy, T. 2021. Optimization of viable glioblastoma cryopreservation for establishment of primary tumor cell cultures. Biopreservation and Biobanking 19(1): 66. https://doi.org/10.1089/BIO.2020.0050

Whaley, D., Damyar, K., Witek, R.P., Mendoza, A., Alexander, M. & Lakey, J.R.T. 2021. Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplantation 30: 963689721999617. https://doi.org/10.1177/0963689721999617

Yang, J., Gao, L., Liu, M., Sui, X., Zhu, Y., Wen, C. & Zhang, L. 2020. Advanced biotechnology for cell cryopreservation. Transactions of Tianjin University 26(6): 409-423. https://doi.org/10.1007/s12209-019-00227-6

 

*Corresponding author; email: manira@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next